9 research outputs found

    Automated Optimization Strategies for Horizontal Wellbore and Hydraulic Fracture Stages Placement in Unconventional Gas Reseroirs

    Get PDF
    In the last decades rapid advances in horizontal drilling and hydraulic fracturing technologies ensure production of commercial quantities of natural gas from many unconventional reservoirs. Reservoir management and development strategies for shale and tight gas plays have evolved from ad hoc approaches to more rigorous strategies that involve numerical optimization in presence of multiple economic and production objectives and constraints. Application of an automated integrated optimization framework for placement of horizontal wellbores and transverse hydraulic fracture stages along them has potential of increasing shale gas reserves and projects’ revenue even further. This dissertation introduces a novel integrated evolutionary-based optimization framework for placement of horizontal wellbores and hydraulic fracture stages that allows enhancing production from shale gas formations and provides a solid foundation for future field-scale application once better understanding of shale petrophysics and geomechanics is developed. The proposed optimization workflow is developed and tested in stages. First, we summarize what has been done in the subject field previously by scholars and identify what is missing. Second, we present assumptions for the shale gas simulation model that make our framework and the simulation model applicable. Third, we pre-screen several economic and petrophysical parameters in order to identify the most significant for the subsequent sensitivities analysis. Forth, we develop evolutionary-based optimization strategy for placement of hydraulic fracture stages along a single horizontal wellbore. We investigate how sensitive the optimization results to changes in the key parameters pre-selected during pre-screening. Fifth, we enhance the framework to handle multiple horizontal producers, discuss the conditions when such approach is applicable, and extensively test this integrated workflow on a suite of simulation runs. Finally, we implement and apply multi-objective optimization approach (the improved non-dominated sorting genetic algorithm) to the problem of optimal HF stage placement in shale gas reservoirs and analyze the efficiency of our evolutionary-based optimization scheme in presence of multiple conflicting or non-conflicting objectives. Based on our extensive testing and rigorous formulation of the optimization problem, we find that the chosen evolutionary framework is effective in calculating the optimal number of horizontal wells, the number of HF stages, their specific locations along the wells as well as their half-length. We also conclude that further computational efficiency can be achieved if minimum stage spacing and same chromosome elimination procedure are used. The multi-objective approach has been tested on conflicting and non-conflicting objectives and proved to compute the Pareto optimal front of solutions (or production scenarios) in computationally efficient manner

    Modeling effects of coupled convection and CO2 injection in stimulating geopressured geothermal reservoirs

    Get PDF
    Geopressured geothermal brines are a vast geothermal resource in the US Gulf of Mexico region. In particular, geopressured sandstones near salt domes are potential sources of geothermal energy because salt diapirs with high thermal conductivities may pierce younger, cooler strata. These characteristics enhance transfer heat from older, hotter strata at the base of the diapir into shallower strata. Moreover, widespread geopressure in the Gulf region tends to preserve permeability, enhancing productivity. As an example, the Camerina A sand of South Louisiana was chosen as a geomodel for a numerical simulation study of effects of CO2 injection and coupled convection as a method of geothermal development. This study presents scenarios for heat harvesting from typical Gulf of Mexico aquifers including Camerina A that take advantage of coupled convection and simultaneous CO2 sequestration. Suites of TOUGH2 numerical simulations demonstrate benefits of introducing CO2 injection wells, varying locations of injection/production wells, and exploiting gravity segregation of the fluids

    Automated Optimization Strategies for Horizontal Wellbore and Hydraulic Fracture Stages Placement in Unconventional Gas Reseroirs

    Get PDF
    In the last decades rapid advances in horizontal drilling and hydraulic fracturing technologies ensure production of commercial quantities of natural gas from many unconventional reservoirs. Reservoir management and development strategies for shale and tight gas plays have evolved from ad hoc approaches to more rigorous strategies that involve numerical optimization in presence of multiple economic and production objectives and constraints. Application of an automated integrated optimization framework for placement of horizontal wellbores and transverse hydraulic fracture stages along them has potential of increasing shale gas reserves and projects’ revenue even further. This dissertation introduces a novel integrated evolutionary-based optimization framework for placement of horizontal wellbores and hydraulic fracture stages that allows enhancing production from shale gas formations and provides a solid foundation for future field-scale application once better understanding of shale petrophysics and geomechanics is developed. The proposed optimization workflow is developed and tested in stages. First, we summarize what has been done in the subject field previously by scholars and identify what is missing. Second, we present assumptions for the shale gas simulation model that make our framework and the simulation model applicable. Third, we pre-screen several economic and petrophysical parameters in order to identify the most significant for the subsequent sensitivities analysis. Forth, we develop evolutionary-based optimization strategy for placement of hydraulic fracture stages along a single horizontal wellbore. We investigate how sensitive the optimization results to changes in the key parameters pre-selected during pre-screening. Fifth, we enhance the framework to handle multiple horizontal producers, discuss the conditions when such approach is applicable, and extensively test this integrated workflow on a suite of simulation runs. Finally, we implement and apply multi-objective optimization approach (the improved non-dominated sorting genetic algorithm) to the problem of optimal HF stage placement in shale gas reservoirs and analyze the efficiency of our evolutionary-based optimization scheme in presence of multiple conflicting or non-conflicting objectives. Based on our extensive testing and rigorous formulation of the optimization problem, we find that the chosen evolutionary framework is effective in calculating the optimal number of horizontal wells, the number of HF stages, their specific locations along the wells as well as their half-length. We also conclude that further computational efficiency can be achieved if minimum stage spacing and same chromosome elimination procedure are used. The multi-objective approach has been tested on conflicting and non-conflicting objectives and proved to compute the Pareto optimal front of solutions (or production scenarios) in computationally efficient manner

    Attracting and Maintaining Demographic Diversity in Energy: Lessons from Petroleum Engineering.

    No full text
    Diversity is important for any organization, its development and growth. However, frequently we observe that, if left to their own devices, many social and professional communities become self-selective, less susceptible to change, and, thus, less diverse. For example, this phenomenon can be readily observed in the academia when a professor forms a research group that is mostly comprised of people from certain origin or personal qualities. While on an individual level, this situation can be quite convenient and even beneficial, on the large scale the lack of diversity creates severe distortions and discourages many talented individuals from joining the group, organization, or industry in general. Diversity that includes ethnic, age, and gender aspects is a serious concern in overall energy industry and academia. One of the most prominent field impacted by diversity problems is petroleum engineering which can be used as a learning opportunity for other branches of energy industry. Using petroleum engineering community, we can understand what processes have led it to become self-selective, what measures have been applied to changes the situation and introduce more diversity

    Profitability Evaluation of a Hybrid Geothermal and CO2 Sequestration Project for a Coastal Hot Saline Aquifer.

    No full text
    With growing interest in commercial projects involving industrial volume CO2 sequestration, a concern about proper containment and control over the gas plume becomes particularly prominent. In this study, we explore the potential of using a typical coastal geopressured hot saline aquifer for two commercial purposes. The first purpose is to harvest geothermal heat of the aquifer for electricity generation and/or direct use and the second one is to utilize the same rock volume for safe and controlled CO2 sequestration without interruption of heat production. To achieve these goals, we devised and economically evaluated a scheme that recovers operational and capital costs within first 4 years and yields positive internal rate of return of about 15% at the end of the operations. Using our strategic design of well placement and operational scheduling, we were able to achieve in our numerical simulation study the following results. First, the hot water production rates allowed to run a 30 MW organic Rankine cycle plant for 20 years. Second, during the last 10 years of operation we managed to inject into the same reservoir (volume of 0.8 x 109 m3) approximately 10 million ton of the supercritical gas. Third, decades of numerical monitoring the plume after the end of the operations showed that this large volume of CO2 is securely sequestrated inside the reservoir without compromising the caprock integrity
    corecore